Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 554-568, 2014.
Article in Chinese | WPRIM | ID: wpr-279483

ABSTRACT

Streptomycetes produce many antibiotics and are important model microorgansims for scientific research and antibiotic production. Metabolomics is an emerging technological platform to analyze low molecular weight metabolites in a given organism qualitatively and quantitatively. Compared to other Omics platform, metabolomics has greater advantage in monitoring metabolic flux distribution and thus identifying key metabolites related to target metabolic pathway. The present work aims at establishing a rapid, accurate sample preparation protocol for metabolomics analysis in streptomycetes. In the present work, several sample preparation steps, including cell quenching time, cell separation method, conditions for metabolite extraction and metabolite derivatization were optimized. Then, the metabolic profiles of Streptomyces coelicolor during different growth stages were analyzed by GC-MS. The optimal sample preparation conditions were as follows: time of low-temperature quenching 4 min, cell separation by fast filtration, time of freeze-thaw 45 s/3 min and the conditions of metabolite derivatization at 40 degrees C for 90 min. By using this optimized protocol, 103 metabolites were finally identified from a sample of S. coelicolor, which distribute in central metabolic pathways (glycolysis, pentose phosphate pathway and citrate cycle), amino acid, fatty acid, nucleotide metabolic pathways, etc. By comparing the temporal profiles of these metabolites, the amino acid and fatty acid metabolic pathways were found to stay at a high level during stationary phase, therefore, these pathways may play an important role during the transition between the primary and secondary metabolism. An optimized protocol of sample preparation was established and applied for metabolomics analysis of S. coelicolor, 103 metabolites were identified. The temporal profiles of metabolites reveal amino acid and fatty acid metabolic pathways may play an important role in the transition from primary to secondary metabolism in S. coelicolor.


Subject(s)
Gas Chromatography-Mass Spectrometry , Metabolic Networks and Pathways , Metabolome , Metabolomics , Methods , Streptomyces coelicolor , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL